Art of Control Valves Technology

DOUBLE-PORTED CONTROL GLOBE VALVES TYPE \$10

APPLICATION AREA:

The valves type S10 with pressure balanced plug are used as inal low control units for automatic and remote control systems. They can be applied to adjust flow of fluids in various industries, such as chemical plants, steelworks, shipyards, etc. The offer includes valves with or without driving units, where pneumatic actuators with spring membranes, are used as standard driving appliances.

CONSTRUCTION:

The valves units incorporate the following major components:

Body (1):

Flanges with plain mating surfaces, with a groove or a tongue to:

PN-H-74306:1985, PN-H-74307:1985,

ISO 2084-1974, ISO 2441-1975,

as well as with the RF plain flange or with the RTJ groove to ANSI B16.10-1986, for welding to PN 160.

Nominal diameters:

20; 25; 32; 40; 50; 65; 80; 100; 150; 200; 250; 300.

Nominal pressures:

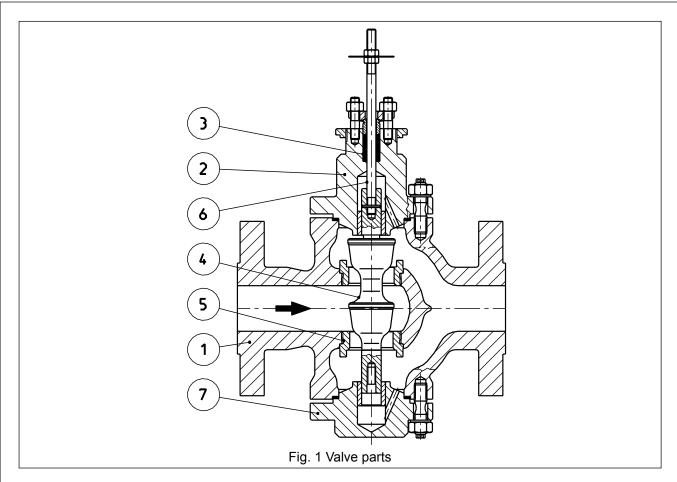
16; 25; 40; 63; 100; 160 or CL150; CL300; CL600.

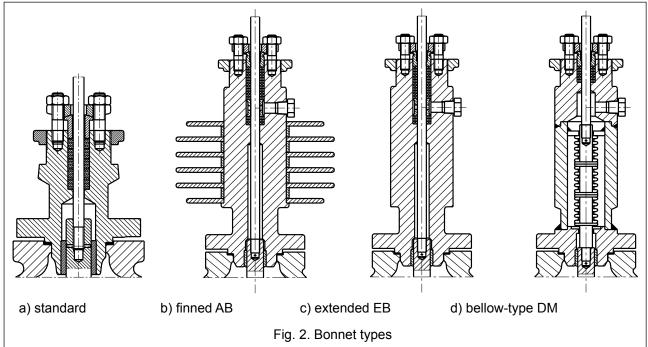
In case of possible solidification of the flowing fluid or crystalline precipitation, which may lead to jamming the valve plug, the cast steel body can be fitted with a heat jacket, made from piping or die-pressed sheets that are joint together by welding.

The valve bodies with heating jackets are manufactured for valves:

- DN20...40 i DN150...200 for the rated pressures PN 16...40,
- DN50...100 for the rated pressures PN16...100.

The valves employ steam or hot oil with working temperature < 200°C.


- The following flange sized are used to connect the appliance to heating pipelines:
- DN15 PN16 acc. to PN-H-74731:1987 for DN20...80,
- DN25 PN16 acc. to PN-H-74731:1987 for DN100...200.


Standard bonnet (2) - is made of the same material as the valve body and can be of the following design options:

- standard
 for the fluid temperature
 for the fluid temperature
 extended EB
 for the fluid temperature
 for the fluid temperature
 for the fluid temperature
- bellow-type DM for the fluid temperature up to +300°C for the valves DN 20 ... 100 with rated pressure PN16 ... 25 as well as for the valves DN150 with rated pressure PN16.

Bellow-type bonnets are used for toxic, explosive and flammable agents.

Bonnet sealing (3) - made in form of the rings, can be madr of the following materials:

- PTFE braided,
- PTFE V-shaped rings,
- graphite braided,
- balanced graphite rings

Table 1. Type and options for bonnet sealing.

Type and options of sealing	Maximum allov	vable pressure	Fluid temperature [°C]			
Type and options of scaming	fluid and gases	steam	standard	finned	extended	
PTFE – braided		25	-20260	260350		
PTFE – V-shaped rings	160	25	-20200	200330	-18020	
graphite – braided	100	160	260350	350650	-10020	
balanced graphite – rings		100	200350	330000		

To select type of sealing it is necessary to take account for character of the handled fluid, its temperature and working pressure.

Plug (4) and Seat (5)

Are made of stainless steel. X6CrNiMoTi 17-12-2 (1.4571) or stainless steel X17CrNi 16-2 (1.4057) heat processed.

When handing fluids with abrasive properties the hardfacing techniques can be applied, e.g.:

Within the technology of hardening internal elements of valves, the following are used:

- a) stelliting of mating surfaces: ~ 40HRC (plugs and valve seats for the full range of valve diameters DN 20...300, stelliting the entire contour of plugs and seats for the valves DN 20...100).
- b) CrN coating inserting chromium nitride into the external layer of a detail at the depth of approx. 0.1 mm; $\sim 950 \text{HV}$
- c) heat processing: plug (~45HRC), seat (~35HRC), stem (~35HRC), sleeve (~45HRC)

Seats with soft inserts (PTFE), only made of acid resistant steel, with retention of the maximum pressure drop to 35 bar and working temperature (-180°C...+180°C).

The following kinds of plugs are manufactured:

- profile,
- perforated.

Depending on the desired characteristic curve the following plug types are used:

- equal percentage, contoured,
- quick opening, poppet type for on/off control,
- linear, contoured.

Leakage class of the valve

- below 0.5% K_{vs} (II class to PN-EN 60534-4) for hard plugs
- bubble tightness (VI class to PN-EN 60534-4) for plugs with soft sealing

Table 2. Types of plugs and valves function

		The valve function is obtained by means of linear drive					
		rise of the control air pressure (pneumatic signal)					
Plug type and characteristic curve	Plug symbol	<u> </u>	<u> </u>				
Curve		<u>+</u>	*				
		▼T ▼					
Equal percentage	Р						
Quick opening	S	opens valve	closes valve				
Linear	L						

Hard plugs are manufactured for full passage via the valve seat as well as for volumetric flow reduced to 40% of the rated valve capacity and for flow coefficients as per Table 3.

Table 3. Flow coefficients $K_{VS}(m^3/h)$

Nominal		Full	flow	Reduced flow 0.4				
diameter Stroke								
DN	I Imml	linear (L)	quick opening (S)	linear (L)	quick opening (S)			
		equal percentage (P)	quick opening (3)	equal percentage (P)				
20	12,7	6,8	8,6	4	5			
25	12,7	10,3	12,8	4	5			
32	19,1	15,4	20,5	6	8,2			
40	19,1	24	28,3	9,4	11,3			
50	25,4	41	51,4	16,3	20,5			
65	25,4	62	77	25	31			
80	38,1	94	120	37,6	48			
100	38,1	167	215	67	86			
150	50,8	385	464	154	185			
200	63,5	640	840	256	336			
250	63,5	1000	1330	395	532			
300	88,9	1390	1930	560	772			
Calculation coefficients: $F_L^2=0.9$, $X_T=0.75$, $Fd=0.34$, $xF_z=0.58$								

Valve stem (6) - made of stainless steel, X6CrNiMoTi 17-12-2 (1.4571) or X17CrNi 16-2 (1.4057) heat processed. Enables sturdy connection of the valve plug with the actuator shaft.

Draining plug (7) - is made of the same material as the valve body. Beside its principal function, which consists in sealing the bottom part of the valve body and guiding the valve plug, it can also be used for easy draining of dirt that is trapped in the valve sump during valve operation, with no need do dismantle the bonnet and actuator.

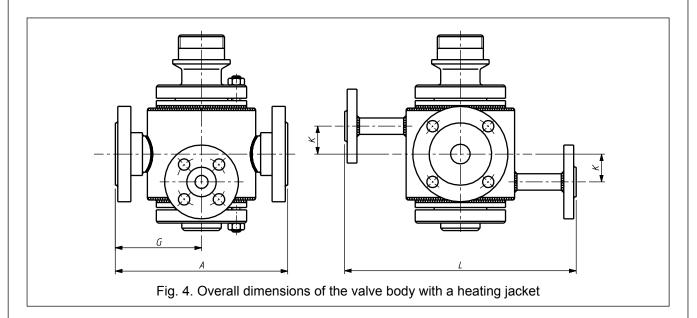


Table 4. Dimensions of the valve with a heating jacket – weight of heating jackets

Nominal diameter DN	А	G	К	L	Weight of the heating jacket
	[kg]				
20	230	115	33	258	3,5
25	230	115	33	258	3,5
32	260	130	39	258	3,5
40	260	125	55	277	4,5
50	300	145	54	299	6,0
65	340	158	64	316	7,5
80	380	180	78	343	9,0
100	430	200	100	408	15,0
150	550	245	153	503	37,0
200	600	270	198	550	48,0

OVERALL DIMENSIONS, CONNECTIONS AND WEIGHT OF VALVES

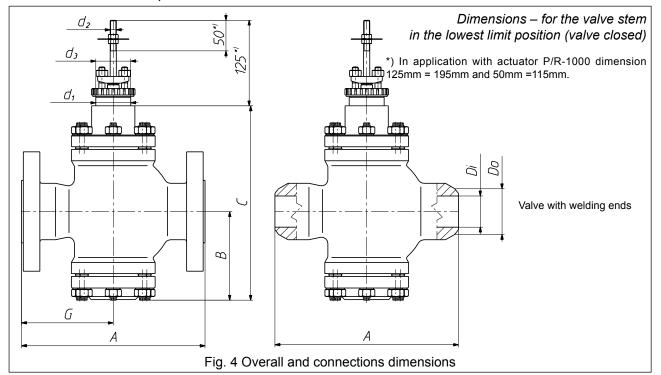
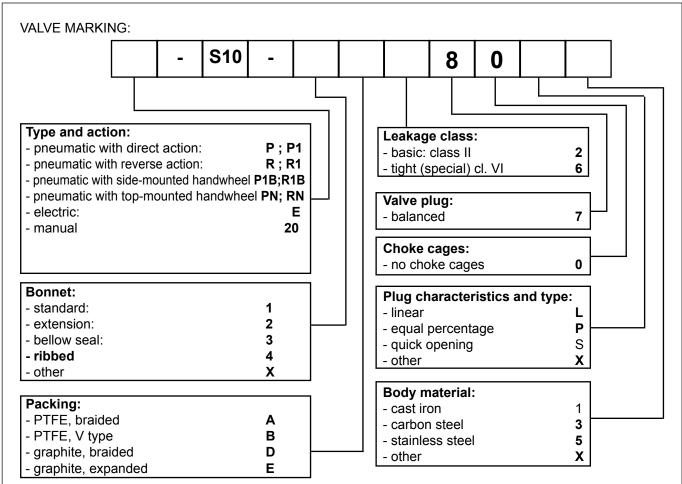



Table 5. Dimensions and weight of valves

Nominal	Nominal	Body						В		d_2		Bonnet			
diameter pre	pressure	flan	langed for welding		d,	Maximum acceptable stem	d ₃		std.	AB;EB	DM	Weight			
DN	PN	Α	G	Α	G	D ₀	D _i		·	load [kN]	Ü	С			
[mm]	[bar]				[mm]				[in]	[mm]			[kg]	
20	10 - 16 25 - 40 63 - 160	150 150 230	72 72 115	- - -	- - -	-	- - -	108	400			245	355	445 445 —	7,0 7,5 8,0
25	10 - 16 25 - 40 63 - 160	160 160 230	77 77 115	- 230	- - 115	- 36	- - 26	100		5/16"-24UNF3A [4 kN]		245	355	445 445 —	7,5 8,0 8,5
32	10 - 16 25 - 40 63 - 160	180 180 260	87 87 130	- 260	130	- - 44	- 32	115	00 00 00 5 5 5 5 5 5 00 00 00 00 5			260	370	505 505 —	10,5 11,0 12,0
40	10 - 16 25 - 40 63 - 100 160	200 200 260 260	95 95 125 125	- - - 260	- - - 125	- - - 52	- - - 38	120 120 130 130				275 275 275 295	390 390 390 400	475 475 —	16,0 16,5 17,0 20,0
50	10 - 16 25 - 40 63 - 100 160	230 230 300 300	110 110 145 145	- - 300	- - - 145	- - - 67	- - - 51	145 145 145 165		3/8"-24UNF3A	2 1/4"-16UN2A	315 315 315 355	430 430 430 475	590 590 —	23,0 24,0 25,0 30,5
65	10 - 16 25 - 40 63 - 100 160	290 290 340 340	135 135 158 158	- - - 340	- - - 158	- - - 84	- - - 64	160 160 160 195		[6,3 kN]		355 355 355 415	460 460 460 535	615 615 —	30,0 31,0 31,5 40,0
80	10 - 16 25 - 40 63 - 100 160	310 310 380 380	145 145 180 180	- - - 380	- - - 180	- - - 100	- - - 76	195 195 195 205		1/2"-20UNF3A		430 430 430 450	525 525 525 540	760 760 —	36,0 37,0 38,0 60,5
100	10 - 16 25 - 40 63 - 100 160	350 350 430 430	165 165 200 200	- - - 430	- - 200	- - - 130	- - - 102	205 205 205 240		[10 kN]		445 445 445 515	555 555 555 630	780 780 —	63,0 64,0 65,5 85,0
150	10 - 16 25 - 40 63 - 100 160	480 480 550 550	210 210 245 245	- - - 550	- - - 245	- - - 192	- - - 152	280 280 280 290		5/8"-18UNF3A [16 kN]		595 595 595 700	735 735 735 820	905 — — —	137 138 140 170
200	10 - 16 25 - 40 63 - 100 160	600 600 650 650	270 270 295 295	- - - 650	- - - 295	- - 253	- - - 203	335 335 335 355	84,15		3 5/16"-16NS2A	705 705 705 790	840 840 840 970	=	201 204 209 252
250	10 - 16 25 - 40 63 - 100 160	730 730 775 775	331 331 350 350	- - - 775	- - - 350	- - - 318	- - - 254	375 375 375 405	1 1	3/4"-16UNF3A [25 kN]		785 785 785 965	885 885 885 1085		350 355 365 425
300	10 - 16 25 - 40 63 - 100 160	850 850 900 900	346 346 375 375	- - 900	- - - 375	- - 336	- - 264	450 450 450 525	95,25		3 3/4"-12UN2A	960 960 960 1175	1140 1140 1140 1340	=	530 535 545 640
Note: Valve weight without actuator, with a standard bonnet															

MARKING EXAMPLE:

Control valve type S10 with pneumatic actuator reverse action with top mounted handweel, extension bonnet, packing: graphite: expanded, leakage class VI with equal percentage plug, body material carbon steel:

RN-S10-2E680P3

Marking is shown on valve nameplate.

Additionaly, it shows:

- nominal size [DN],
- nominal pressure [PN],
- max working temperature [TS],
- max working pressure [PS],
- test pressure [PT],
- flow ratio [Kvs],
- plug stroke [H],
- plug stroke fluid group [1 or 2],
- serial number and year of manufacture.

OTHER ACTUATORS:

- 1. Pneumatic actuators type P/R or P1/R1.
- 2. The handwheel type 20.
- 3. Other electric or electro-hydraulic actuators

Detailed information and technical data of actuators – according to separate catalogue sheets. For detailed information and technical parameters of specific actuators please refer to relevant datasheets.

ORDERING:

Orders must contain complete information that is necessary to calculate parameters of the valve in accordance with the technical data questionnaire. To find out the most suitable valves please refer to the staff of the Marketing and Sales Departments and Technical Department for assistance.